The effect of epidural compression on cerebral cortex: a rat model.

نویسندگان

  • Jeng-Rung Chen
  • Yueh-Jan Wang
  • Guo-Fang Tseng
چکیده

We developed a rat model of epidural plastic bead implantation to study the effect of physical compression on the cerebral cortex. Epidural implantation of a bead of appropriate size compressed the underlying sensorimotor cortex without apparent ischemia, since the capillary density of the cortex was increased. Although the thickness of all layers of the compressed cortex was significantly decreased, no apparent changes in the number of NADPH-diaphorase reactive neurons, reactive astrocytes, or microglial cells were observed, nor were apoptotic neurons observed. In fact, the densities of the neurons in most cortical layers apparently increased. To determine how epidural compression affects neuronal morphology, the dendritic arbors of layer III and V pyramidal neurons were evaluated using a fixed tissue intracellular dye injection technique. Neurons in both layers remained pyramidal in shape and their somatic sizes remained unaltered for at least a month after compression. On the other hand, their total dendritic length was significantly reduced beginning at 3 days post implantation. These analyses showed that apical dendrites were affected sooner than basal ones. The reduction of dendritic length was associated with a drop in the number of dendritic branches rather than dendritic trunks, suggesting the trimming of the peripheral part of the dendritic arbor. Detailed analysis showed that dendritic spines on all dendrites were reduced as early as 3 days following implantation. These results suggest that cortical neurons remodel their structures substantially within 3 days after being subjected to epidural compression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation the protective effect of aminoguanidine on cortex and striatum damage in acute phase of focal cerebral ischemia in rat

Introduction: Several studies have indicated that late treatment of aminoguanidine (AG) reduces cerebral ischemic injuries in animal models. However, the effects of early treatment of AG on cerebral ischemic damage are not well understood. This study was designed to evaluate effect of early treatment of AG on cortex and striatum injuries as well as neurological dysfunctions in transient mode...

متن کامل

Effect of Paraoxon on GABA Uptake by Rat Cerebral Cortex Synaptosomes

Background: It has been suggested that organophosphates may inhibit gamma-aminobutyric acid (GABA) metabolism in synaptosomal preparations. In the present investigation, we have assessed the interaction between paraoxon and the GABA system at synaptic level. Methods: Synaptosomes were prepared from male Wistar rats (200-250 g). Cerebral cortex was dissected and homogenized, then centrifuged at ...

متن کامل

Effect of paraoxon on the synaptosomal GABA uptake in rat hippocampus and cerebral cortex

Introduction: Paraoxon (the neurotoxic metabolite of organophosphorus (OP) insecticide, parathion) exerts acute toxicity by inhibition of acetylcholinesterase (AChE), leading to the accumulation of acetylcholine in cholinergic synapses and hence overstimulation of the cholinergic system. Since, reports on changes in the level of γ- amino butyric acid (GABA) during OP-induced convulsion have bee...

متن کامل

P16: Effect of Hesperetin Nanoparticles on Cerebral Gene Expression and Activity of Catalase and Superoxide Dismutase in Alzheimer’s Rat

Hesperetin (Hst) is a well-known bioflavonoid, has low bioavailability. Hesperetin nanoparticles (Nano-Hst) enhance its bioavailability. Nano-Hst were not explored for their potential therapeutic activities in Alzheimer’s disease (AD). Hence, the present study was performed to evaluate the protective effect of Nano-Hst in comparison to free Hesperetin on against intracerebroventricular in...

متن کامل

The effect of cabergoline and levetiracetam on the histological and stereological structure of the cerebellar cortex, hippocampal and cerebellum in a model of PTZ-induced seizure kindling in rats

Background: Seizure is a chronic neurological disease that may have non-neurological origins such as astrocytes and microglia. Objective: The aim of this study was to investigate the effect of alone and co-administration of cabergoline and levetiracetam on the histological and stereological structure of the cerebral cortex, hippocampus and cerebellum following chronic seizures in rat. Methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurotrauma

دوره 20 8  شماره 

صفحات  -

تاریخ انتشار 2003